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ABSTRACT

"After an initial discussion of the importance of phonon
processes in optical maser research, a brief survey of photon
and phonon transitions occurring as a conseq'-cnce 1'the
optical excitation of the F-center is presented. The existence
of metastable excited F-states is postulated to account for a
longer than predicted lifetime of the excited F-state. Infrared
quenching, photoconductivity and absorption modulation exper-
iments are outlined for the purpose of testing the metastable
state hypothesis.
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I. INTRODUCTION

Multi-level optical masers were first demonstrated by Maiman
using optical pumping in ruby (Ref. 1). A detailed analysis of the
levels involved in the spontaneous downward transitions has shown the
existence of two sets of doublets separated by 7 = 29 cm-1 in the upper
bottleneck (due to the long lifetime of the spontaneous radiative tran-
sition with the wave number 7 = 14, 000 cm-1 or X = 6,940 A0 ).
Furthermore, two sets of doublets separated by V = 1 cm- are
observed close to the ground state (Ref. 2).

The understanding of the pumping transition (7 =2 6, 000 cm-1 ) and
the fluorescence transition (7 a 14, 000) is fairly complete. The
opposite is true with respect to the radiationless relaxations designated
as 2 - 3, 7 = 29 cm"1 and 7 = 1 cm-1 (Fig. 1) which take place as a
consequence of the interaction of the excited electronic states with the
lattice. These interactions are of fundamental significance in under-
standing parameters such as collision-broadened line widths and shapes
in solids. On the other hand, the line widths of radiative transitions are
an important factor in obtaining a coherent output of an optical maser

oscillator operating at a high power level. The simultaneous frequency
and amplitude modulation of a ruby optical maser has been measured
recently by several investigators (Refs. 3, 4) and was found to be in
agreement with the predictions made by the theoretical analyses.

The purpose of the investigation proposed herein is to analyze,
both theoretically and experimentally, the details of the transitions
which occur in a basic four level optical maser just before the
spontaneous radiative downward transition. However, instead of a
substitutional Cr3+ impurity of the ruby, the study of an electron
trapped in a negative ion vacancy is suggested. Because of a much
simpler structure, this defect can be treated to a much higher degree
of approximation than the complicated paramagnetic ion.

II. THE F-CENTER OPTICAL MASER

Recently, Markham and Mergerian (Refs. 5, 6) proposed a maser
scheme in which an electron trapped in a negative ion vacancy is
optically excited into a higher state. The electron returns to the
ground state through three consecutive transitions, two of which are
radiationless while the third emits a photon of about half the pumping
energy (Fig. 2). The computed lifetime of the spontaneous radiative
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Figure 1. ENERGY LEVEL DIAGRAM OF THE OPTICAL RUBY MASER
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decay is of the order of 10-8 sec. This computation is based on the
assumption that the spontaneous radiative decay is adequately described
by an electric dipole transition (Ref. 7). The two non-radiative relax-
ation processes which complete the four-level scheme are assumed to
have lifetimes of the order of 10-lZ sec. each. However, experimental
measurements performed by Swank in F. C. Brown's laboratory
indicate that for a typical F-center, the cumulative lifetimes for both
the first non-radiative relaxation and the radiative transition are of
the order of 10-6 sec. (Refs. 8, 9). The assumption was made here
that a phonon bottleneck does not exist following the radiative downward
transition. Since the defects and the processes are relatively simple,
the present discrepancy between theory and experiment is rather
startling. Two explanations have been advanced thus far to account for
this discrepancy:

(1) The radiative downward transition cannot be interpreted
in terms of a classical oscillator having the strength of approximately
unity (Ref. 10). Smakula used this assumption in deriving the
absorption coefficient for the absorption process 1 - 2 (Fig. 2) (Ref. 11).

(2) The relaxation of the excited F-state involves the forma-
tion of metastable states which decay through a many-phonon process
(Ref. IZ). The lifetimes of these metastable states are longer than
assumed by Markham for a direct phonon relaxation process 2 - 3
(Fig. 2) (Ref. 7).

The answer to this discrepancy must be found before the F-center
excited to ground state transitions can be understood.

Ill. METASTABLE EXCITED F-STATES

The following approach is proposed to demonstrate the existence
of metastable excited F-states and to evaluate their lifetimes.

The first metastable excited F-state in KC1 lies energetically
0.08eV and 0. 14eV below the conduction band for additively and
X-ray colored crystals, respectively. The electron is placed into
this state immediately after the adiabatic transition from the ground
state which occurs upon the absorption of one 2. 1eV pumping photon.
The energy level of this metastable state was determined by measuring
the activation energy of the thermal ejection of the electron into the
conduction band (Refs. 13, 14). The Franck-Condon process of the
lattice relaxation follows, during which time the local mode phonons are
created. The average energy expended in both local phonon processes
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given by transition 2 - 3 and 4 - 1 is greater or equal to the difference
between the energy absorbed in the transition 1 - 2 and re-emitted in
the transition 3 - 4 (Fig. 2), depending upon the quantum efficiency of
fluorescence. At low temperatures, the quantum efficiency of
fluorescence is known to be unity. Therefore, about 1eV energy is
dissipated in the localized phonon modes during a complete excitation
cycle of the F-center. If it is assumed that this energy is equally
distributed among both 2 - 3 and 4 - I phonon transitions, the lowest
metastable excited state is about 0. 65eV below the conduction band.
On the other hand, the frequencies of the normal phonon modes can be
inferred from the Reststrahlen wavelength of the order of 100 microns,
corresponding to hvp - 10-?eV. The existence of the local phonon
modes can be ascribed to the fact that a heavy negative ion has been
replaced by an electron. This should shift the local nhonon mode
frequency to a higher value as compared with the normal phonon mode

by a factor certainly less than 2M-mme . ? 102.

The upper value for the energy of a localized phonon, obtained
from the above crude estimate, is most likely much too large. This
leads to the assumption that the excited F-state-lattice relaxation
occurs through a multiphonon process (15) involving the creation of
many localized phonons. The energy contained within the localized
modes subsequently is dissipated throughout the entire lattice through
the coupling between the local and the normal phonon modes. To
investigate these assumptions, the following experiments, utilizing
the double optical excitation technique, are proposed.

IV. LIFETIMES OF METASTABLE EXCITED F-STATES
BY DOUBLE OPTICAL EXCITATION

Three experimental techniques can be suggested to determine the
detailed structure of the metastable F-states (the F*-states): (a) the
infrared quenching of luminescence, (b) the photoconductivity at low
temperatures, (c) the modulation of infrared absorption by the F-center
excitation. All three are based on the double optical excitation technique
which depends on the following two consecutive optically induced tran-
sitions to higher energy states. First, the absorption of a pumping
photon of the F-F* energy induces metastable F* states. Subsequently,
their excitation by the infrared radiation of a suitable energy below
0. 5eV ejects the electron into the conduction band or into a higher
metastable state. (To avoid the thermal excitation of the metastable
states, the double optical excitation experiments should be performed
at temperatures below 1000K).
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The ejection of a carrier into the conduction band can be
determined by the photoconductivity measurements. At the same
time, the luminescence quenching will occur because of the decrease
in quantum efficiency. Furthermore, the absorption of an infrared
photon in the second excitation process will affect the IR absorption
coefficient. Of all these three effects, at least the luminescence
quenching has been observed before. In fact, the existence of this
quencting delayed the experimental demonstration of luminescence
for a number of years (Refs. 16, 17).

V. CONCLUDING REMARKS

The brief discussion presented above did not take into account
the existence of the conversion and the aggregate color centers in
alkali halides.

In particular, the F1 and M centers may cause a spurious
infrared absorption which will interfere with the measurements. The
F' center (Ref. 18) can be formed at the temperatures of interest in
this investigation (e.g., below 100 0 K) if an F-center in the ground
dtate traps the electron ejected by the second optical excitation from
the F*-state into the conduction band. On the other hand, the M-center
concentration will grow if the samples are exposed to light above 1000 K
(Ref. 19). However, experimental techniques can be designed which
will suppress or at least delay the formation of the interfering color
centers. These techniques encompass the use of pulsed light sources

for either the F - F* or the F,, - conduction band excitation.
Furthermore, at temperatures below 50"K, the free carriers are
scattered predominantly by the ionized impurities instead of the lattice
vibrations. Therefore, the mobility of free carriers is high (Ref. 20),
and even a weak electric field will suffice to sweep them out. Thus,
the formation of F1 centers in the optically active region of the sample
can be prevented even at low temperatures. The electrical quenching
of the F-center luminescence is observed only under high electric
fields (Ref. 21), and therefore does not have to be considered at low
sweep-out field intensities.
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